Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 58, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413979

RESUMO

BACKGROUND: Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD: By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS: Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS: Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.


Assuntos
Processamento Alternativo , Anilidas , Compostos de Epóxi , Macrolídeos , Neoplasias da Próstata , Pirimidinas , Sulfonamidas , Masculino , Humanos , Íntrons , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Androgênios , Splicing de RNA , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular/genética
2.
J Invest Dermatol ; 144(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37739336

RESUMO

Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.


Assuntos
Cor de Cabelo , Melanócitos , Camundongos , Humanos , Animais , Cor de Cabelo/genética , Melanócitos/metabolismo , Melaninas/metabolismo , Cabelo , Folículo Piloso
3.
Cell Rep ; 42(9): 113132, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708024

RESUMO

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.


Assuntos
Melanoma , Multiômica , Humanos , Melanoma/patologia , Melanócitos/metabolismo , DNA , Antígenos de Neoplasias/genética
4.
JHEP Rep ; 5(8): 100794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520673

RESUMO

Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver. In this study, we investigated the role of MAGL in liver regeneration. Methods: Hepatocyte proliferation was studied in vitro in hepatoma cell lines and ex vivo in precision-cut human liver slices. Liver regeneration was investigated in mice treated with a pharmacological MAGL inhibitor, MJN110, as well as in animals globally invalidated for MAGL (MAGL-/-) and specifically invalidated in hepatocytes (MAGLHep-/-) or myeloid cells (MAGLMye-/-). Two models of liver regeneration were used: acute toxic carbon tetrachloride injection and two-thirds partial hepatectomy. MAGLMye-/- liver macrophages profiling was analysed by RNA sequencing. A rescue experiment was performed by in vivo administration of interferon receptor antibody in MAGLMye-/- mice. Results: Precision-cut human liver slices from patients with chronic liver disease and human hepatocyte cell lines exposed to MJN110 showed reduced hepatocyte proliferation. Mice with global invalidation or mice treated with MJN110 showed blunted liver regeneration. Moreover, mice with specific deletion of MAGL in either hepatocytes or myeloid cells displayed delayed liver regeneration. Mechanistically, MAGLHep-/- mice showed reduced liver eicosanoid production, in particular prostaglandin E2 that negatively impacts on hepatocyte proliferation. MAGL inhibition in macrophages resulted in the induction of the type I interferon pathway. Importantly, neutralising the type I interferon pathway restored liver regeneration of MAGLMye-/- mice. Conclusions: Our data demonstrate that MAGL promotes liver regeneration by hepatocyte and macrophage reprogramming. Impact and Implications: By using human liver samples and mouse models of global or specific cell type invalidation, we show that the monoacylglycerol pathway plays an essential role in liver regeneration. We unveil the mechanisms by which MAGL expressed in both hepatocytes and macrophages impacts the liver regeneration process, via eicosanoid production by hepatocytes and the modulation of the macrophage interferon pathway profile that restrains hepatocyte proliferation.

5.
Front Mol Neurosci ; 16: 1141079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266374

RESUMO

Introduction: The molecular changes leading to Alzheimer's disease (AD) progression are poorly understood. A decisive factor in the disease occurs when neurofibrillary tangles (NFT) composed of microtubule associated protein tau (MAPT) form in the entorhinal cortex and then spread throughout the brain. Methods: We therefore determined mRNA and circular RNA changes during AD progression, comparing Braak NFT stages I-VI. Total RNA was isolated from human brain (entorhinal and frontotemporal cortex). Poly(A)+ RNA was subjected to Nanopore sequencing, and total RNA was analyzed by standard Illumina sequencing. Circular RNAs were sequenced from RNase R treated and rRNA depleted total RNA. The sequences were analyzed using different bioinformatic tools, and expression constructs for circRNAs were analyzed in transfection experiments. Results: We detected 11,873 circRNAs of which 276 correlated with Braak NFT stages. Adenosine to inosine RNA editing increased about threefold in circRNAs during AD progression. Importantly, this correlation cannot be detected with mRNAs. CircMAN2A1 expression correlated with AD progression and transfection experiments indicated that RNA editing promoted its translation using start codons out of frame with linear mRNAs, which generates novel proteins. Discussion: Thus, we identified novel regulated retained introns that correlate with NFT Braak stages and provide evidence for a role of translated circRNAs in AD development.

6.
Exp Dermatol ; 32(7): 1096-1107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148203

RESUMO

Keloid scars are hypertrophic and proliferating pathological scars extending beyond the initial lesion and without tendency to regression. Usually, keloids are considered and treated as a single entity but clinical observations suggest heterogeneity in keloid morphologies with distinction of superficial/extensive and nodular entities. Within a keloid, heterogeneity could also be detected between superficial and deep dermis or centre and periphery. Focusing on fibroblasts as main actors of keloid formation, we aimed at evaluating intra- and inter-keloid fibroblast heterogeneity by analysing their gene expression and functional capacities (proliferation, migration, traction forces), in order to improve our understanding of keloid pathogenesis. Fibroblasts were obtained from centre, periphery, papillary and reticular dermis from extensive or nodular keloids and were compared to control fibroblasts from healthy skin. Transcriptional profiling of fibroblasts identified a total of 834 differentially expressed genes between nodular and extensive keloids. Quantification of ECM-associated gene expression by RT-qPCR brought evidence that central reticular fibroblasts of nodular keloids are the population which synthesize higher levels of mature collagens, TGFß, HIF1α and αSMA as compared to control skin, suggesting that this central deep region is the nucleus of ECM production with a centrifuge extension in keloids. Although no significant variations were found for basal proliferation, migration of peripheral fibroblasts from extensive keloids was higher than that of central ones and from nodular cells. Moreover, these peripheral fibroblasts from extensive keloids exhibited higher traction forces than central cells, control fibroblasts and nodular ones. Altogether, studying fibroblast features demonstrate keloid heterogeneity, leading to a better understanding of keloid pathophysiology and treatment adaptation.


Assuntos
Queloide , Humanos , Queloide/metabolismo , Pele/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Colágeno/metabolismo , Células Cultivadas
7.
Nucleic Acids Res ; 51(11): 5512-5526, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37026485

RESUMO

Transcription-associated cyclin-dependent kinases (CDKs) regulate the transcription cycle through sequential phosphorylation of RNA polymerase II (RNAPII). Herein, we report that dual inhibition of the highly homologous CDK12 and CDK13 impairs splicing of a subset of promoter-proximal introns characterized by weak 3' splice sites located at larger distance from the branchpoint. Nascent transcript analysis indicated that these introns are selectively retained upon pharmacological inhibition of CDK12/13 with respect to downstream introns of the same pre-mRNAs. Retention of these introns was also triggered by pladienolide B (PdB), an inhibitor of the U2 small nucelar ribonucleoprotein (snRNP) factor SF3B1 that recognizes the branchpoint. CDK12/13 activity promotes the interaction of SF3B1 with RNAPII phosphorylated on Ser2, and disruption of this interaction by treatment with the CDK12/13 inhibitor THZ531 impairs the association of SF3B1 with chromatin and its recruitment to the 3' splice site of these introns. Furthermore, by using suboptimal doses of THZ531 and PdB, we describe a synergic effect of these inhibitors on intron retention, cell cycle progression and cancer cell survival. These findings uncover a mechanism by which CDK12/13 couple RNA transcription and processing, and suggest that combined inhibition of these kinases and the spliceosome represents an exploitable anticancer approach.


Assuntos
RNA Polimerase II , Fatores de Processamento de RNA , Splicing de RNA , Íntrons/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Humanos
8.
Nat Commun ; 14(1): 1830, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005415

RESUMO

Recent data have shown that liver fibrosis can regress even at later stages of cirrhosis and shifting the immune response from pro-inflammatory towards a resolutive profile is considered as a promising option. The immune regulatory networks that govern the shift of the inflammatory phenotype and thus potential reversal of liver fibrosis are lesser known. Here we show that in precision-cut human liver slices obtained from patients with end-stage fibrosis and in mouse models, inhibiting Mucosal-Associated Invariant T (MAIT) cells using pharmacological or antibody-driven approaches, limits fibrosis progression and even regresses fibrosis, following chronic toxic- or non-alcoholic steatohepatitis (NASH)-induced liver injury. Mechanistic studies, combining RNA sequencing, in vivo functional studies (performed in male mice) and co-culture experiments indicate that disruption of the MAIT cell-monocyte/macrophage interaction results in resolution of fibrosis both by increasing the frequency of restorative Ly6Clo at the expenses of pro-fibrogenic Ly6Chi monocyte-derived macrophages and promoting an autophagic phenotype in both subsets. Thus, our data show that MAIT cell activation and the consequential phenotype shift of liver macrophages are important pathogenic features of liver fibrosis and could be targeted by anti-fibrogenic therapy.


Assuntos
Células T Invariantes Associadas à Mucosa , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Cirrose Hepática/patologia , Macrófagos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Fenótipo , Camundongos Endogâmicos C57BL
9.
Brain ; 146(1): 149-166, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298632

RESUMO

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Huntington/genética , Astrócitos/metabolismo , Proteostase , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
10.
Br J Cancer ; 128(5): 918-927, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36550208

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that has become a major challenge in clinics. Understanding the neuroendocrine differentiation (NED) process at the molecular level is therefore critical to define therapeutic strategies that can prevent multi-drug resistance. METHODS: Using RNA expression profiling and immunohistochemistry, we have identified and characterised a gene expression signature associated with the emergence of NED in a large PCa cohort, including 169 hormone-naïve PCa (HNPC) and 48 castration-resistance PCa (CRPC) patients. In vitro and preclinical in vivo NED models were used to explore the cellular mechanism and to characterise the effects of castration on PCa progression. RESULTS: We show for the first time that Neuropilin-1 (NRP1) is a key component of NED in PCa cells. NRP1 is upregulated in response to androgen deprivation therapies (ADT) and elicits cell survival through induction of the PKC pathway. Downmodulation of either NRP1 protein expression or PKC activation suppresses NED, prevents tumour evolution toward castration resistance and increases the efficacy of docetaxel-based chemotherapy in preclinical models in vivo. CONCLUSIONS: This study reveals the NRP1/PKC axis as a promising therapeutic target for the prevention of neuroendocrine castration-resistant variants of PCa and indicates NRP1 as an early transitional biomarker.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Neuropilina-1 , Neoplasias de Próstata Resistentes à Castração/patologia , Antagonistas de Androgênios , Resistência a Medicamentos , Diferenciação Celular , Linhagem Celular Tumoral
11.
Clin Genet ; 103(2): 247-251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353970

RESUMO

Clonal hematopoiesis (CH) consists in an abnormal expansion of a hematopoietic stem cell bearing an advantageous somatic variant. A survey of known recurrent somatic missense variants in DNMT3A, SF3B1, SRSF2, and TP53, some of the most prominent genes underlying CH of indeterminate potential (CHIP), in gnomAD noncancer database shows the presence of 73 variants. Many of them reach frequencies higher than 0.01% in various populations and, in many cases, are enriched in specific populations. Consistent with a potential involvement in CHIP, we found that the age distribution of the carriers is shifted towards old ages. Moreover, the variant allele frequencies are on average lower than 50%, expected for germline heterozygous variants. The pervasive presence of some of such variants in blood DNA from elder individuals is compatible with CHIP of somatic origin. On practical grounds, CHIP can lead to misclassification of somatic variants in cancer-predisposition genes as inherited, which bear consequences for the affected individuals and their families.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Idoso , Mutação , Hematopoese/genética , Células-Tronco Hematopoéticas , Mutação em Linhagem Germinativa
12.
Nucleic Acids Res ; 50(22): 12979-12996, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533443

RESUMO

Aggregation of the microtubule-associated protein tau characterizes tauopathies, including Alzheimer's disease and frontotemporal lobar degeneration (FTLD-Tau). Gene expression regulation of tau is complex and incompletely understood. Here we report that the human tau gene (MAPT) generates two circular RNAs (circRNAs) through backsplicing of exon 12 to either exon 7 (12→7 circRNA) or exon 10 (12→10 circRNA). Both circRNAs lack stop codons. The 12→7 circRNA contains one start codon and is translated in a rolling circle, generating a protein consisting of multimers of the microtubule-binding repeats R1-R4. For the 12→10 circRNA, a start codon can be introduced by two FTLD-Tau mutations, generating a protein consisting of multimers of the microtubule-binding repeats R2-R4, suggesting that mutations causing FTLD may act in part through tau circRNAs. Adenosine to inosine RNA editing dramatically increases translation of circRNAs and, in the 12→10 circRNA, RNA editing generates a translational start codon by changing AUA to AUI. Circular tau proteins self-aggregate and promote aggregation of linear tau proteins. Our data indicate that adenosine to inosine RNA editing initiates translation of human circular tau RNAs, which may contribute to tauopathies.


Assuntos
Tauopatias , Proteínas tau , Humanos , Adenosina/metabolismo , Códon de Iniciação , Inosina/metabolismo , RNA/genética , RNA/metabolismo , Edição de RNA , RNA Circular/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
13.
J Allergy Clin Immunol ; 150(6): 1545-1555, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35780935

RESUMO

BACKGROUND: Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases. OBJECTIVE: We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia. METHODS: We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network. RESULTS: The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213. CONCLUSION: We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity.


Assuntos
Síndrome da Liberação de Citocina , Proteômica , Humanos
14.
Neurotrauma Rep ; 3(1): 105-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35403103

RESUMO

To determine molecular changes that correlate with long-term physiological changes after spinal cord injury associated with spasticity, we used a complete transection model with an injury at sacral spinal level S2, wherein tail spasms develop in rats weeks to months post-injury. Using Illumina and nanopore sequencing, we found that from 12,266 expressed genes roughly 11% (1,342) change expression levels in the rats with spasticity. The transcription factor PU.1 (Spi-1 proto-oncogene) and several of its known regulated genes were upregulated during injury, possibly reflecting changes in cellular composition. In contrast to widespread changes in gene expression, only a few changes in alternative exon usage could be detected because of injury. There were more than 1,000 changes in retained intron usage, however. Unexpectedly, most of these retained introns have not been described yet but could be validated using direct RNA nanopore sequencing. In addition to changes from injury, our model allowed regional analysis of gene expression. Comparing the segments rostral and caudal to the injury site in naïve animals showed 525 differentially regulated genes and differential regional use of retained introns. We did not detect changes in the serotonin receptor 2C editing that were implicated previously in this spinal cord injury model. Our data suggest that regulation of intron retention of polyadenylated pre-mRNA is an important regulatory mechanism in the spinal cord under both physiological and pathophysiological conditions.

15.
Eur J Hum Genet ; 30(10): 1187-1190, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35277653

RESUMO

Despite routine analysis of a large panel of genes, pathogenic variants are only detected in approximately 20% of families with hereditary breast and/or ovarian cancer. Mobile element insertions (MEI) are known to cause genetic diseases in humans, but remain challenging to detect. Retrospective analysis of targeted next-generation sequencing (NGS) data from 359 patients was performed using a dedicated MEI detection pipeline. We detected one MEI in exon 9 of the PALB2 gene in a woman with a family history of breast cancer. The pathogenic variant, c.2872_2888delins114AluL2, disrupts the PALB2 coding sequence and leads to the production of a truncated protein, p.(Gln958Valfs*38). This is the first report of a pathogenic MEI in PALB2. This study illustrates that MEI analysis may help to improve molecular diagnostic yield and can be performed from targeted NGS data used for routine diagnosis.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Elementos Alu/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Ovarianas/genética , Estudos Retrospectivos
16.
Brain ; 145(3): 1029-1037, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34983064

RESUMO

Hereditary spastic paraplegia refers to rare genetic neurodevelopmental and/or neurodegenerative disorders in which spasticity due to length-dependent damage to the upper motor neuron is a core sign. Their high clinical and genetic heterogeneity makes their diagnosis challenging. Multigene panels allow a high-throughput targeted analysis of the increasing number of genes involved using next-generation sequencing. We report here the clinical and genetic results of 1550 index cases tested for variants in a panel of hereditary spastic paraplegia related genes analysed in routine diagnosis. A causative variant was found in 475 patients (30.7%) in 35/65 screened genes. SPAST and SPG7 were the most frequently mutated genes, representing 142 (9.2%) and 75 (4.8%) index cases of the whole series, respectively. KIF1A, ATL1, SPG11, KIF5A and REEP1 represented more than 1% (>17 cases) each. There were 661 causative variants (382 different ones) and 30 of them were structural variants. This large cohort allowed us to obtain an overview of the clinical and genetic spectrum of hereditary spastic paraplegia in clinical practice. Because of the wide phenotypic variability, there was no very specific sign that could predict the causative gene, but there were some constellations of symptoms that were found often related to specific subtypes. Finally, we confirmed the diagnostic effectiveness of a targeted sequencing panel as a first-line genetic test in hereditary spastic paraplegia. This is a pertinent strategy because of the relative frequency of several known genes (i.e. SPAST, KIF1A) and it allows identification of variants in the rarest involved genes and detection of structural rearrangements via coverage analysis, which is less efficient in exome datasets. It is crucial because these structural variants represent a significant proportion of the pathogenic hereditary spastic paraplegia variants (∼6% of patients), notably for SPAST and REEP1. In a subset of 42 index cases negative for the targeted multigene panel, subsequent whole-exome sequencing allowed a theoretical diagnosis yield of ∼50% to be reached. We then propose a two-step strategy combining the use of a panel of genes followed by whole-exome sequencing in negative cases.


Assuntos
Paraplegia Espástica Hereditária , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cinesinas/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Linhagem , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Espastina/genética , Sequenciamento do Exoma
17.
Blood ; 139(12): 1820-1832, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34905599

RESUMO

Cutaneous T-cell lymphomas (CTCLs) are rare malignancies involving primarily the skin. Responses to treatment are usually short-lived in advanced CTCL. The determinants of long-term CTCL control are unclear. Mogamulizumab, an anti-human CCR4 antibody that acts by antibody-dependent cell cytotoxicity against CCR4+ CTCL tumor cells and peripheral memory blood regulatory T cells, has been associated with long-lasting remissions and immune adverse events. Here, we reported skin rashes in 32% of 44 patients with CTCL treated with mogamulizumab, associated with significantly higher overall survival (hazard ratio, 0.16; 0.04-0.73; P = .01). Rash occurred in patients with Sézary syndrome and was associated with longer time to progression. These rashes were characterized by a CD163+ granulomatous and/or CD8+ lichenoid skin infiltrate. High-throughput sequencing analysis of T-cell receptor ß genes in skin and blood flow cytometry confirmed the depletion of CTCL tumor cells, as well as the recruitment of new reactive T-cell clones in skin at the time of skin rash. CXCL9 and CXCL11, two macrophage-derived chemokines that recruit CXCR3+ T cells to skin, were overexpressed in skin rashes. A higher frequency of TIGIT+ and PD1+ exhausted reactive blood T cells was observed at baseline in patients with rash, and this frequency decreased with mogamulizumab treatment. These data are consistent with mogamulizumab-induced long-term immune CTCL control by activation of the macrophage and T-cell responses in patients with rash.


Assuntos
Exantema , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Anticorpos Monoclonais Humanizados , Quimiocina CXCL11 , Quimiocina CXCL9 , Exantema/induzido quimicamente , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Macrófagos/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores
18.
J Exp Clin Cancer Res ; 40(1): 397, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930366

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS: To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS: Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS: Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.


Assuntos
Quinases Relacionadas a NIMA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Prognóstico , Transfecção
19.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638998

RESUMO

During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells. Secondary transplants showed increased survival in treated compared to untreated mice. Unlike the AML model, BCL-2 expression and RAS activity decreased following treatment and the RAS:BCL-2 complex remained in the plasma membrane. Exon-specific gene expression profiling (GEP) of HR-MDS mice showed 1952 differentially regulated genes upon treatment, including genes important for the regulation of stem cells, differentiation, proliferation, oxidative phosphorylation, mitochondrial function, and apoptosis; relevant in human disease. Spliceosome genes, found to be abnormal in MDS patients and downregulated in our HR-MDS model, such as Rsrc1 and Wbp4, were upregulated by the treatment, as were genes involved in epigenetic regulation, such as DNMT3A and B, upregulated upon disease progression and downregulated upon treatment.


Assuntos
Compostos de Bifenilo/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Nitrofenóis/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Sulfonamidas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Proteínas Monoméricas de Ligação ao GTP/genética , Síndromes Mielodisplásicas/mortalidade , Piperazinas/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células-Tronco/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
20.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34495298

RESUMO

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.


Assuntos
Autoimunidade , Neoplasias dos Ductos Biliares/imunologia , Colangiocarcinoma/imunologia , Colangite/imunologia , Animais , Neoplasias dos Ductos Biliares/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangite/patologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Monitorização Imunológica , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...